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Outline
I One View of ”Solving” SDEs and a Refresher 
on Ito’s Formula 

II Extracting Information Implied by a Given 
SDE Even If Pathwise Solution Unavailable  

III Using Techniques Above for Statistical 
Inference

IV Approximate Solutions and Applications e.g. 
Test if a Levy Process is Appropriate Given Observational Data 
Coming from a Complex System
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Suppose Given ODE:

Traditional View of “Solving” Would 
be To Find A Function Such That 
(e.g. Use Integrating Factor):

“Independent 
Variable/Index”

X(t) = f(t)

dX

dt
= bo(X, t)
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Suppose Given SDE:

dXt = b(Xt, t)dt+ σ(Xt, t)dBt

One View of “Solving” Would be 
To Find A Function Such That:

Xt = f(t, Bt)

“Independent 
Variable/Index”

A Process We Know Well
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Or Suppose Given SDE:

Traditional View of “Solving”
would be To Find A Function 
Such That:

“Independent Variable”

A Process We Know and Love

dYt = b
o(Yt, t)dt+ σo(Yt, t)dXt

Yt = g(t,Xt)
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More Concretely Given SDE:

Standard Example:   Geometric Brownian Motion

“Independent 
Variable/Index”

dXt = αXtdt+ βXtdBt

Xt = exp (α− 1
2β

2)t+ βBt

A Process We Know Well
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More Concretely Given SDE:

Found by Introducing:   

“Independent 
Variable/Index”

dXt = αXtdt+ βXtdBt

Xt = exp (α− 1
2β

2)t+ βBt

A Process We Know Well

Y (X) = log(X)
and Applying Ito’s Formula to Change Variables   
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Ito’s Formula
• One of the Most Widely Known Results 

Associated with SDEs:
f(t,Xt)− f(t,Xo) =
tR
0

∂f(s,Xs)
∂s ds+

tR
0

∂f(s,Xs)
∂X dXs +

1
2

tR
0

∂2f(s,Xs)
∂2X d[X,X]s

d[X,X]t = σ2(t,X)dt d[B,B]t = dt

For a General Diffusion: For Brownian Motion:

Something Unique to 
Stochastic Integration a la Ito
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Ito’s Formula
• One of the Most Widely Known Results 

Associated with SDEs (For Time Homogeneous Functions):

f(Xt)− f(Xo) =
tR
0

∂f(Xs)
∂X dXs +

1
2

tR
0

∂2f(Xs)
∂2X d[X,X]s

Something Unique to 
Stochastic Integration a la Ito

A More Fundamental Introduction 
On Quadratic Variation In The Next 
Lecture
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Ito’s Formula
• Result Also Applies to Jump Processes:

f(Xt)− f(Xo) =

P
0<s≤t

f(Xs)− f(Xs−)− ∂f(Xs−)
∂X

∆Xs − 1
2
∂2f(Xs−)

∂2X
(∆Xs)

2

tR
0+

∂f(Xs−)
∂X dXs +

1
2

tR
0+

∂2f(Xs−)
∂2X d[X,X]s+
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Another Illustrative Application of 
Ito’s Formula

tR
0

BsdBs =
1
2 (B

2
t − t)

dXt = 0dt+ 1dBt

Y = f(X) = X2/2

or Yt =
tR
0

XsdXs +
1
2 t

“Brownian 
Variables/Coordinates”

Same Result in 
Terms of Newly 
Defined Variables
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But Explicit Solutions Are Elusive

And Even For  Cases That Are 
“Solvable” It May Not Be As Nice As We 
Think…..

Complicated Functions of B.M. Not 
Always Easy to Express in Terms of 
Normal Density or Distribution       
(Think Dickey Fuller Tables) 
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But Explicit Solutions Are Elusive

However….Ito’s Formula Can Be Used to Extract Useful 
Information, e.g. Moments or a Transition Density

(Different Than Solving in Terms of  “Paths”) 

Ito’s Formula is Very  Useful In Statistical Modeling 
Because it Does Allow Us to Quantify Some Properties 
Implied by an Assumed SDE
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Cox Ingersoll Ross (CIR) Process 
dXt = κ(α−Xt)dt+ σ

√
XtdBt

Rewrite Above Using New Constants

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

dXt = (a+ bXt)dt+ σ
√
XtdBt

XT −Xt =
TR
t

(a+ bXs)ds+
TR
t

σ
√
XsdBs

Then Integrate from t to T (Assume      Known Deterministically)Xt
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Cox Ingersoll Ross (CIR) Process 

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

E[XT −Xt|Ft] = E[
TR
t

(a+ bXs)ds+
TR
t

σ
√
XsdBs|Ft]

E[XT −Xt|Ft] = E[
TR
t

(a+ bXs)ds|Ft] + 0

XT −Xt =
TR
t

(a+ bXs)ds+
TR
t

σ
√
XsdBs

Then Take Conditional Expectation

Brownian Increments are Mean Zero Martingales
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Cox Ingersoll Ross (CIR) Process 

Y (T ) = E[XT |Ft]

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

dXt = (a+ bXt)dt+ σ
√
XtdBt

dY (T )
dT = a+ bY (T )

Y (T ) = Y (t) exp(b(T − t)) + a
b

¡
exp(b(T − t))− 1

¢

E[XT −Xt|Ft] = E[
TR
t

(a+ bXs)ds|Ft] + 0

Define: Then Differentiate 
Deterministic Function 
Above
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Cox Ingersoll Ross (CIR) Process 

Y (T ) = E[XT |Ft]

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

dXt = (a+ bXt)dt+ σ
√
XtdBt

dY (T )
dT = a+ bY (T )

Y (T ) = Y (t) exp(b(T − t)) + a
b

¡
exp(b(T − t))− 1

¢

Conditional Independence of B.M and Ordinary Differential 
Equation Results (Integrating Factor) Provides Conditional 
Mean



Chris Calderon, PASI, Lecture 2

Cox Ingersoll Ross (CIR) Process 

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

dXt = (a+ bXt)dt+ σ
√
XtdBt

Conditional Independence of B.M and Ordinary Differential 
Equation Results (Integrating Factor) Provides Conditional 
Mean 

Conditional Variance Can Be Readily Found by Ito Formula  
and Well-Known Statistical Identity

Z(T ) = E[X2
T |Ft] Y (T ) = E[XT |Ft]

V AR[XT |Ft] = Z(T )−
¡
Y (T )

¢2
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Cox Ingersoll Ross (CIR) Process 
dX2

t = 2XtdXt + σ2Xtdt

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

Rewrite in Integrated Form, Taking 
Conditional Expectations and Then 
Differentiating Again Yields:

dZ(T )
dT = (2a+ σ2)Y (T ) + 2bZ(T )

dX2
t = 2(aXt + bX

2
t )dt+ 2σX

3/2
t dBt + σ2Xtdt

[X,X]t = σ2Xtf(X) = X2
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Useful for Method of Moments or 
Martingale Estimating Equations 

Bibby, B. & Sorensen, M. (1995) Bernoulli 1, 17-39.

Approach Allows Estimation and Useful 
Approximations (Can Handle Cases Where 
MLE Is Problematic [Hyperbollic Diffusion])

Though Asymptotic Variance Maybe Inefficient

Bigger Problem Lies with Assessing Various 
Model Assumptions via Goodness-of-Fit 
(Return to This Point Later….)

bt=κ
Xt√
1+Xt
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For Likelihood Based Inference 
One Requires Transition Density

Maximum Likelihood is Useful for 
Asymptotically Efficient Inference

However Assessing the Validity of 
“Independent Increments” Assumption Benefits 
from Using Information Implied by SDE

Transition Density Can Also Be Obtained by 
Ito’s Formula (Using Backward and Forward 
Kolmogorov Equations)
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Ito’s Formula and PDEs

An Associated Cauchy PDE:

A[f(X)] = b(X)∂f(X)∂X + σ2(X) 12
∂2f(X)
∂2X

∂u(x,t)
dt

= A[u(x, t)] ∀t > 0
u(x, 0) = f(x)

Can Solve Deterministic Problem By Taking 
Expectation Over SDE Paths (See Board)

dXt = b(Xt)dt+ σ(Xt)dBt
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PDEs Help Characterize SDEs

An Associated Cauchy PDE:

A[f(X)] = b(X)∂f(X)∂X + σ2(X) 12
∂2f(X)
∂2X

∂u(x,t)
dt

= A[u(x, t)] ∀t > 0
u(x, 0) = f(x)

If PDE Solvable, Can Compute “Pay-Off” Functions. 
Smooth Adjoint Solutions Yield Fokker Planck 
Equation [Useful in Likelihood Based Inference].

dXt = b(Xt)dt+ σ(Xt)dBt

p(XT |Xt)
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Though Most PDEs Rarely Admit Closed-Form Solutions

An Associated Cauchy PDE:

A[f(X)] = b(X)∂f(X)∂X + σ2(X) 12
∂2f(X)
∂2X

∂u(x,t)
dt

= A[u(x, t)] ∀t > 0
u(x, 0) = f(x)

However the Generator Above Can Be Used To Help 
Approximate PDE Solutions [More Later (Maybe)…..] 

dXt = b(Xt)dt+ σ(Xt)dBt
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dXt = κ(α−Xt)dt+ σdBt

Assume Ornstein Uhlenbeck Process Fits Data

Data Generating Process One (Discrete Version of Assumed Model)

Xi+1 = FXi + σoZi
Data Generating Process Two (Discrete Misspecified Model)

Xi+1 = FXi + σoZiZi−1
Zi iid Normal RandomVariables

Testing Validity of An Implicit Levy 
Process Assumption
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Testing Validity of An Implicit Levy 
Process Assumption

dXt = κ(α−Xt)dt+ σdBt

Assume Ornstein Uhlenbeck Process Fits Data

Data Generating Process Two (Discrete Misspecified Model)

Xi+1 = FXi + σoZiZi−1

Zi iid Normal RandomVariables.
Romano, J. & Thombs, L. (1996) JASA 91, 590-600.

“Noise”
Increments 
Uncorrelated 
but Not 
Serially 
Independent
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Testing Validity of An Implicit Levy 
Process Assumption

dXt = κ(α−Xt)dt+ σdBt

Assume Ornstein Uhlenbeck Process Fits Data

Data Generating Process Two (Discrete Misspecified Model)

Xi+1 = FXi + σoZiZi−1

“Noise”
Increments 
Uncorrelated 
but Not 
Serially 
Independent

φi := ZiZi−1

E[φji+1φki ]
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Forcing Both the Square and Circular Peg 
Into The Circular Hole

Assume Ornstein Uhlenbeck Process Fits Data

Data Generating Process One (Discrete Version of Assumed Model)

Xi+1 = FXi + σoZi
Data Generating Process Two (Discrete Misspecified Model)

Xi+1 = FXi + σoZiZi−1 {Xi}Ni=1

{Xi}Ni=1

θ ≡ (α,κ,σ)

θ̂ ≡ maxθ p(X0; θ)p(X1|X0; θ) . . . p(XN |XN−1; θ)
θ̂ ≡ maxθ p(X0; θ)p(X1|X0; θ) . . . p(XN |XN−1; θ)
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Forcing Both the Square and Circular Peg 
Into The Circular Hole

Assume Ornstein Uhlenbeck Process Fits Data

{Xi}Ni=1

{Xi}Ni=1

θ ≡ (α,κ,σ)

θ̂ ≡ maxθ p(X0; θ)p(X1|X0; θ) . . . p(XN |XN−1; θ)
θ̂ ≡ maxθ p(X0; θ)p(X1|X0; θ) . . . p(XN |XN−1; θ)

Simulate 100 Time Series Batches Using 
Common Noise Sequence and Find 
MLEs
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Forcing Both the Square and Circular Peg 
Into The Circular Hole

Correlation (A Low Order Moment) In “Residuals” Seems Similar
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Correlation (A Low Order Moment) In “Residuals” Seems Similar

Xi+1 − Eθ̂[Xi+1|Xi]

However if Transition Density (All Moments) Used Along with 
Tools From Lecture 4, the Misspecification Becomes Apparent 
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The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

Many Approaches to Dealing with This Problem 
(Assess Performance Using Simulated Data of 
Known Data Generating Process)
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The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

The Ait-Sahalia Method.  Use Generator of Transformed 
Process to Approximate Transition Density

dXt = b(Xt)dt+ σ(Xt)dBt

dYt = μ(Yt)dt+ 1dBt

Use Ito to Get a new SDE

(assume well behaved and invertible)
Y :=

XZ
1

σ(u)
du
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The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

The Ait-Sahalia Method.  Use Generator of Tranformed
Process to Approximate Transition Density

dYt = μ(Yt)dt+ 1dBt

AY [f(Y )] = μ(Y )∂f(X)∂y + 1
2
∂2f(Y )
∂2Y
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The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

The Ait-Sahalia Method.  Use Generator of Tranformed
Process to Approximate Transition Density

lim
δt→0

δ−(J+1)
n
E[f(Yt+δ)|Yt = yo]−

JP
j=1

AjY [f(yo)] δ
j

j!

o
=

AJ
Y [f(yo)]
(J+1)!

Various Methods for Exploiting This and 
Other Related Expansions for Inference
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The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

pZ(δt, z|yo; θ) ≈

φ(z)

KX
j=0

η
(j)
Z (δt, yo; θ)Hj(z)

The Ait-Sahalia Method.  Use Generator of Transformed 
Process to Approximate Transition Density
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The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

The Ait-Sahalia Method.  Use Generator of Transformed 
Process to Approximate Transition Density

η
(j)
Z (δt, yo; θ) ≡

1

j!

∞Z
−∞

Hj(z)pZ(δt, z|yo; θ)dz :=

1

j!
E[Hj

³
δt−

1
2 (Yt+δt − yo)

´
|Yt = yo; θ].



Chris Calderon, PASI, Lecture 2

The Problem:  Transition Density 
Rarely Available in Closed-form

Prakasa Rao,  (1999) Statistical Inference for Diffusion Type 
Processes, Arnold, London.

Highly Recommended to Test (Both Estimation and Inference 
Results)All Approximations Using Controlled Data.

Can Give Negative Densities and/or Gradients of Log Likelihood Can 
Act Funny In Points

Calderon (2007). SIAM Mult. Mod. & Sim.  6. 
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